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Music is a non-verbal human language, built on logical, hierarchical structures, that offers excellent opportunities to explore how 
the brain processes complex spatiotemporal auditory sequences. Using the high temporal resolution of magnetoencephalography, 
we investigated the unfolding brain dynamics of 70 participants during the recognition of previously memorized musical sequences 
compared to novel sequences matched in terms of entropy and information content. Measures of both whole-brain activity and 
functional connectivity revealed a widespread brain network underlying the recognition of the memorized auditory sequences, which 
comprised primary auditory cortex, superior temporal gyrus, insula, frontal operculum, cingulate gyrus, orbitofrontal cortex, basal 
ganglia, thalamus, and hippocampus. Furthermore, while the auditory cortex responded mainly to the first tones of the sequences, 
the activity of higher-order brain areas such as the cingulate gyrus, frontal operculum, hippocampus, and orbitofrontal cortex largely 
increased over time during the recognition of the memorized versus novel musical sequences. In conclusion, using a wide range of 
analytical techniques spanning from decoding to functional connectivity and building on previous works, our study provided new 
insights into the spatiotemporal whole-brain mechanisms for conscious recognition of auditory sequences. 
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Introduction 
Research in neuroscience of music has rapidly grown in the past 
decades (Münte et al. 2002; Koelsch et al. 2004; Koelsch et al. 
2019; Pando-Naude et al. 2021). Indeed, since music is an art 
that acquires meaning through the combination of its constituent 
elements extended over time (Cooke 1959; Peretz and Zatorre 
2003), it provides as an excellent tool for investigating the brain’s 
temporal dynamics (Münte et al. 2002; Koelsch et al. 2004; Koelsch 
et al. 2019; Pando-Naude et al. 2021). 

Several studies have focused on the processing of sounds 
and revealed the primary role of the auditory cortex (Näätänen 
et al. 1978; Warrier et al. 2009; Brattico and Pearce 2013). These 
investigations uncovered the early, well-known components of 
the event-related potential/field (ERP/F) that occurs in response 
to sounds, such as the N100, mismatch negativity, and P3a 
(Näätänen et al. 1978; Näätänen et al. 2007). Additional studies 
broadened these investigations by employing more complex 
musical stimuli and analytical techniques. For instance, it has 
been widely shown that music processing evokes activity in brain 
networks connected to emotions (Koelsch 2014). A classic study 
by Blood and Zatorre (2001) revealed that listening to pleasurable 
music was associated with a burst of activity in brain areas related 
to pleasure and reward such as amygdala, orbitofrontal cortex, 

ventral medial prefrontal cortex, and striatum. In addition to 
neural regions connected to emotions, it has been shown that 
music processing recruits motor areas of the brain such as the 
supplementary motor cortex, basal ganglia, and cerebellum, 
which are responsible for tracking rhythm and musical beat, as 
described by Kotz et al. (2018) and Nozaradan et al. (2017). 

Music listening has been investigated not only in terms of 
brain activity but also considering the associated functional 
connectivity between brain areas and its relationship with 
musical expertise. For instance, Alluri et al. (2015) investigated 
musicians and non-musicians while they were listening to music. 
They found that musicians had stronger connectivity than 
non-musicians between supplementary motor area (SMA) and 
ventromedial and ventrolateral cerebral and cerebellar affective 
regions. Differently, non-musicians compared to musicians 
showed stronger connectivity between subcortical regions only. In 
an electroencephalography (EEG) study, Bhattacharya and Petsche 
(2005) reported enhanced gamma band–phase synchrony when 
participants with musical expertise listened to music. 

Notably, music has also been employed to investigate brain 
mechanisms connected to memory. Beyond the strong emotional 
content evoked, music contains complex logical, hierarchical 
structures (Cooke 1959), yielding to meaningful messages and
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information that can be encoded and recognized. Along this 
line, several studies employed functional magnetic resonance 
imaging (fMRI) and paradigms involving music memorization 
and evaluation of specific melodic features. 

For instance, Gaab et al. (2003) measured the brain activ-
ity while participants were asked to compare different simple 
melodic sequences. When participants successfully carried out 
the task, their brain activity was mainly observed in the superior 
temporal, superior parietal, posterior dorsolateral frontal, and 
dorsolateral cerebellar regions and supramarginal and left infe-
rior frontal gyri. In another classic study (Zatorre et al. 1994), 
authors dissociated the perceptual analysis of melodies from 
the pitch comparison of particular tones. They revealed that the 
former process was associated with activity in the right supe-
rior temporal cortex, while the latter mainly involved the right 
prefrontal cortex. A more recent study by Kumar et al. (2015) 
highlighted the crucial role of the primary auditory cortex, inferior 
frontal gyrus and hippocampus underlying an auditory working 
memory (WM) task consisting of maintaining a series of single 
sounds. Remarkably, the authors showed that not only the activity 
but also the connectivity between these three areas were linked 
to the successful completion of the task. 

Auditory memory has also been studied by employing mag-
netoencephalography (MEG), which is beneficial to detect the 
fast-scale brain activity associated with memory tasks. A large 
corpus of studies investigated fast preattentive neural responses, 
implying the existence of sensory auditory memory, namely, N100 
and MMN (Bonetti et al. 2021a; Bonetti, Carlomagno, et al. 2022b; 
Bonetti et al. 2018; Bonetti et al. 2017; Näätänen et al. 2007). 
Additional research has investigated auditory memory by using 
more complex tasks and experimental designs. In another study, 
Albouy et al. (2017) investigated the brain activity underlying 
memory retention. The authors showed that theta oscillations in 
the dorsal stream of the participants’ brain predicted their abili-
ties to perform an auditory WM task that consisted of maintaining 
and manipulating sound information. 

Recently, we expanded on this research by investigating the 
brain mechanisms underlying long-term encoding and recogni-
tion of musical sequences. First, we studied the activity and 
connectivity in the healthy brain underlying the encoding of single 
sounds forming a highly structured musical prelude (Bonetti et al. 
2021b). Our results showed that the first 220 ms of sound pro-
cessing were associated with a wide network of functionally con-
nected brain areas. Notably, while the brain activity was mainly 
observed for the primary and secondary auditory cortex and 
insula, functional connectivity analysis returned a larger picture 
of equally central brain areas, including not only the auditory 
cortex and insula but also the hippocampus, basal ganglia, cin-
gulate gyrus, and frontal operculum. These results showed the 
importance of conducting fast-scale analysis on both activity and 
functional connectivity when studying encoding of sounds. 

Second, we conducted two studies specifically focused on 
investigating the brain mechanisms underlying recognition of 
previously memorized melodies taken from the whole musical 
piece used in our previous study on sound encoding (Bonetti 
et al. 2021b). In the first of these two studies, we focused on 
the brain activity filtered in two different frequency bands 
to reveal that the single sounds forming the melody were 
connected to local and rapid (2 to 8 Hz) brain processing, while 
the whole sequence was linked with concurrent global and 
slower (0.1 to 1 Hz) processing involving a widespread network 
of brain regions (Bonetti et al. 2022a). Importantly, this study 
compared previously memorized musical sequences versus 

completely novel sequences and only focused on univariate 
analysis based on the ERF generated by the stimuli in two specific 
frequency bands. Thus, no functional connectivity nor broadband 
multivariate pattern analysis was conducted. In the second study, 
we utilized the same experimental paradigm but implemented 
key modifications to the stimuli. Specifically, we altered the 
musical pace, with each sound lasting 350 ms compared to the 
250 ms described in Bonetti et al. (2022a). Additionally, novel 
melodies were created by keeping the first sound identical to 
the previously memorized ones and systematically altering the 
subsequent sounds (e.g. changing all the sounds from the second 
tone onward, or from the third, fourth, or only the fifth tone). This 
approach allowed us to study recognition in a different musical 
tempo and investigate the brain mechanisms underlying the 
prediction error generated by the novel stimuli, which presented 
systematic changes from the original, memorized melodies. In 
this study, we also employed a comprehensive array of analyses, 
including broadband multivariate pattern analysis. 

Building on our previous research, the current study uses the 
same data reported in Bonetti et al. (2022a) and aims to both 
replicate some of our previous results and expand them by inves-
tigating novel specific, yet relevant details. 

First, we aim to test whether the recognition of previously 
memorized versus novel melodies is associated to changes only 
in the whole-brain activity or also in the functional connectivity 
patterns measured during the task. 

Second, we compare the brain networks revealed by the 
functional connectivity analysis with those reported for sound 
encoding in Bonetti et al. (2021b). This comparison is particularly 
meaningful since, in the current study, we used a different dataset 
obtained from the same participants as in Bonetti et al. (2021b). 

Third, we use temporal generalization in multivariate pattern 
analysis to study how brain patterns can be generalized over time. 
In Bonetti et al. (2024), we demonstrated that recognizing previ-
ously memorized versus systematically varied musical sequences 
produced stable brain patterns recurring over time for the entire 
duration of the musical sequence. In fact, in that study, the brain 
responses to each sound in the memorized and novel sequences 
were consistently similar, indicating that the brain monitored 
each sound, confirmed predictions when they matched the mem-
ory trace, and detected errors when they did not. In this study, we 
instead compare previously memorized melodies to completely 
novel ones (i.e. not varied after some sounds) to assess if the 
brain patterns of differential activity remain stable over the entire 
musical sequence as in Bonetti et al. (2024) or diverge. 

Finally, based on previous evidence on the relationship between 
cognitive abilities, musical expertise, and music perception 
(Herholz et al. 2008; Bonetti and Costa 2016, 2019; Criscuolo 
et al. 2019; Criscuolo et al. 2022; Fernández-Rubio et al. 2023), 
in this study, we also assess whether WM and musical expertise 
modulate the brain activity underlying recognition of previously 
memorized music. 

Materials and methods 
Overview of the experimental design and of the 
data analysis pipeline 
In this study, we wanted to characterize the fine-grained 
spatiotemporal dynamics of whole-brain activity and functional 
connectivity during recognition of previously memorized auditory 
sequences. In brief, during a session of MEG, 70 participants 
listened to the full prelude in C minor BWV 847 composed by 
Bach and tried to memorize it as much as possible. As depicted in
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Fig. 1. Experimental design and analysis methods. a) Graphical schema of the old/new paradigm. One at a time, several five-tone musical sequences 
(melodies) were presented. These could belong either to the prelude that participants had previously listened to (memorized musical sequence, “old”) 
or could be novel musical sequences (“new”). In this figure, we depicted at first an example of a memorized musical sequence (“old”) sequence (left, 
2nd square) with the relative response pad that participants used to state whether they recognized the excerpt as “old” or “new” (left, 3rd square). Then, 
we depicted an example of novel musical sequence (“new,” right, 2nd square). The total number of trials was 80 (40 memorized and 40 novel musical 
sequences), and their order was randomized. b) We collected, preprocessed, and analyzed MEG sensor data by employing multivariate pattern analysis 
and MCS on univariate tests. c) We beamformed MEG sensor data into source space, providing time series of activity originating from brain locations. 
d) We studied the source brain activity underlying the processing of each tone of the musical sequences for both experimental conditions. 

Fig. 1a and Figure SF1, participants were then presented with 
short musical melodies corresponding to excerpts of Bach’s 
prelude and carefully matched novel musical sequences and were 
asked to indicate whether each musical excerpt was extracted 
from Bach’s prelude or was a novel melodic sequence. 

The analysis pipeline used in this study is partly illustrated 
in Fig. 1b and described in detail in the following paragraphs, 
according to recommendations offered by Gross et al. (2013) and 
Pernet et al. (2020). This focused on extracting results using three 
main measures of brain functioning: (i) MEG sensor space activity, 
(ii) beamformed source localized activity, (iii) static source local-
ized connectivity. 

We computed a vast array of analyses for two reasons: to 
strengthen the reliability of our results by obtaining converging 
findings from different analytical approaches (e.g. multivariate 
pattern analysis and Monte Carlo simulation [MCS] on univariate 
tests) (i); to integrate our brain activity analysis with functional 
connectivity investigations. The aim of the second method was to 
detect the relationship and communication between brain areas 
and not their mere activity in response to our musical stimuli (ii). 

First, we used multivariate pattern analysis and MCSs on 
univariate tests of MEG sensor data. Second, we were interested 
in finding the brain sources of the observed differences and 
therefore we reconstructed the sources of the signal using a 

beamforming algorithm (Fig. 1c) to track the brain activity 
related to each tone of the musical sequences (Fig. 1d). Third, 
complementing our brain activity results, we computed evoked-
responses functional connectivity between brain regions. We 
calculated the static functional connectivity by computing 
Pearson’s correlations between the envelopes of each pair of brain 
areas, focusing especially on whole-brain connectivity and degree 
centrality of brain regions. 

Participants 
By computing a vast array of novel analyses, this study expands 
on our previous works on the brain mechanisms underlying music 
encoding and recognition (Bonetti et al. 2022a; Bonetti et al. 2021b; 
Bonetti et al. 2024; Bonetti et al. 2024; Fernandez-Rubio et al. 
2022; Fernández-Rubio et al. 2022). To ensure full transparency, 
we provide the following detailed information. With regard to the 
current study, Bonetti et al. (2024) refer to a different dataset with 
a distinct set of novel melodies (and musical tempo) obtained 
from a completely different sample. Bonetti et al. (2021a) uti-
lized a different dataset based on sound encoding in the same 
participants as the current study. Fernandez-Rubio et al. (2022) 
and Fernández-Rubio et al. (2022) used different datasets based 
on music recognition in nearly the same participants as the 
current study. Finally, Bonetti et al. (2022a) employed the same
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Table 1. Information about musical training received by non-pianist musicians and pianists recruited in the study. We reported the 
years of formal musical training and the years of daily practice with the musical instrument in four ranges of years. In the last column, 
“AC” refers to the age of commencement of the formal musical training, which is reported in terms of average ± standard deviation. 

Musicianship Years of formal musical training Years of musical instrument daily practice AC 

0 to 2 3 to 5 6 to 9 10+ 0 to 2 3 to 5 6 to 9 10+ 

Non-pianist musicians 0 2 10 12 0 1 9 14 8.41 ± 2.87 
Pianists 0 3 5 15 0 2 5 16 7.57 ± 3.27 

dataset as the current study but focused on different analyses: 
univariate tests on brain activity in specific frequency bands. The 
current study employs instead broadband multivariate pattern 
analysis, broadband univariate tests, and functional connectivity 
in selected frequencies. 

The sample of this study consisted of 70 volunteers who 
performed an “old/new” auditory paradigm. All participants 
came from different Western countries and lived in Denmark 
at the time of the experiment. Thirty-six of them were males 
and 34 were females (age range: 18 to 42 years old, mean age: 
25.06 ± 4.11 years). Since our experiment involved a musical piece 
usually played by classical pianists, we recruited 23 classical 
pianists (13 males and 10 females, age range: 18 to 34 years 
old, mean age: 24.83 ± 4.10 years old), 24 non-pianist musicians 
(12 males and 12 females, age range: 19 to 42 years old, mean 
age: 24.54 ± 4.75), and 23 non-musicians (11 males and 12 
females, age range: 21 to 35 years old; mean age: 25.86 ± 3.34). 
The sample regarding functional connectivity analysis slightly 
differed (three participants had to be discarded due to technical 
problems during acquisition) and consisted of 67 participants (34 
males and 33 females, age range: 18 to 42 years old, mean age: 
25.00 ± 4.18 years). Specifically, 21 were non-pianist musicians (10 
males and 11 females, age range: 19 to 42 years old, mean age: 
24.29 ± 5.02 years), 23 classical pianists (13 males and 10 females, 
age range: 18 to 34 years old, mean age: 24.83 ± 4.10 years), and 23 
non-musicians (11 males and 12 females, age range, 21 to 35 years 
old; mean age: 25.86 ± 3.34 years). 

In Table 1, we reported additional information about the musi-
cal training received by the non-pianist musicians and by the 
pianists involved in our study. 

Participants had homogeneous socio-economic and educa-
tional backgrounds and signed the informed consent before the 
beginning of the experiment. 

All the experimental procedures complied with the Declaration 
of Helsinki—Ethical Principles for Medical Research and were 
approved by the Ethics Committee of the Central Denmark Region 
(De Videnskabsetiske Komitéer for Region Midtjylland) (Ref 1-10-
72-411-17). 

Experimental design and stimuli 
As mentioned in the paragraph on the overview of the analy-
sis pipeline, to study the brain dynamics of musical sequence 
recognition, we employed an old/new (Kayser et al. 2003) auditory 
sequence recognition task during MEG recording (Fig. 1a). First, 
participants were requested to listen to four repetitions of a MIDI 
version of the right-hand part of the entire prelude in C minor 
BWV 847 composed by J.S. Bach. The tones had the same duration, 
which was of approximately 250 ms. The full piece lasted about 
2.5 min; thus, the total duration of the learning part was approx-
imately 10 min (2.5 min repeated four times). Participants were 

asked to focus on the musical prelude and memorize it as much 
as possible. Second, they were presented with 80 short musical 
excerpts lasting 1,250 ms each and requested to indicate whether 
each excerpt belonged to the prelude by Bach (memorized musical 
sequence, “old,” 40 trials) or was a novel musical sequence (“new,” 
40 trials). Subsequent analyses were performed on correctly rec-
ognized trials only. Importantly, the two categories of stimuli 
(memorized and novel musical sequences) were composed to be 
clearly distinguishable in the recognition task, even if they were 
matched among several variables, to prevent for potential con-
founds. Specifically, the two categories were matched for rhythm, 
volume, timbre, tempo, meter, tonality, information content (IC), 
and entropy (H). The memorized melodies consisted of excerpts 
of Bach’s prelude. We extracted one excerpt per musical bar, 
corresponding to the first five notes of the bar. These different 
excerpts were selected because they were representative of the 
melodic contour and of the general repetitive structure of Bach’s 
prelude. The novel musical sequences were created by assembling 
a series of tones with a melodic contour that was completely 
different from the one of Bach’s prelude excerpts. Importantly, 
such difference was present for all musical tones. By doing so, 
we designed a task that was challenging yet feasible, since the 
two categories of melodies presented several similarities, but were 
clearly different from one another. The 80 musical sequences are 
reported in musical notation in Figure SF1. 

The IC and H were estimated for each tone of the prelude’s 
excerpts (mean IC: 5.70 ± 1.73, mean H: 4.70 ± 0.33) and of the 
novel melodies (mean IC: 5.92 ± 1.81, mean H: 4.78 ± 0.35) by 
using Information Dynamics of Music (IDyOM) (Pearce 2018). This 
robust method uses machine learning to return a value of IC for 
the target note based on a combination of the preceding notes 
of the musical piece comprising the target note and of a set of 
rules learned from a large set of prototypical pieces of Western 
music. Thus, in our study, the IC of each note of the musical 
sequences was computed using a model trained on both Bach’s 
prelude excerpts and the novel melodies (i) and on the large 
corpus of prototypical pieces of Western music usually employed 
by IDyOM (Pearce 2018) (ii). In this way, musical sequences of the 
two categories (memorized and novel sequences) with the same IC 
were composed of a series of intervals and melodic contours that 
were quite similar and equally plausible in light of prototypical 
Western music. 

Formally, the IC represents the minimum number of bits 
required to encode ei and is described by equation (1): 

IC
(
ei|ei−1 

(i−n)+1

)
= log2 

1 

p
(
ei|ei−1 

(i−n)+1

) (1) 

where p
(
ei|ei−1 

(i−n)+1

)
is the probability of the event ei given a 

previous set of ei−1 
(i−n)+1 events.
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The entropy gives a measure of the certainty/uncertainty of the 
upcoming event given the previous set of ei−1 

(i−n)+1 events and is 
calculated by equation (2): 

H
(
ei−1 
(i−n)+1

)
=

∑
e∈A 

p
(
ei|ei−1 

(i−n)+1

)
IC

(
ei|ei−1 

(i−n)+1

)
(2) 

Equation (2) shows that if the probability of a given event 
ei is 1, the probability of the other events in A will be 0 and 
therefore, H will be equal to 0 (maximum certainty). On the 
contrary, if all the events are equally likely, H will be maximum 
(maximum uncertainty). Therefore, IDyOM returns an estimation 
of the predictability of each tone and uncertainty with which it 
can be predicted, coherently with the human perception (Sears 
et al. 2018). 

The entire prelude and the musical excerpts were created 
by using Finale (MakeMusic, Boulder, CO) and then presented 
by adopting Presentation software (Neurobehavioural Systems, 
Berkeley, CA). 

We collected structural images for each participant by employ-
ing magnetic resonance imaging (MRI), either on the same day as 
the functional MEG scan or on another day within one month. 

Data acquisition 
We acquired both MRI and MEG data in two independent sessions. 
The MEG data were acquired by employing an Elekta Neuromag 
TRIUX system (Elekta Neuromag, Helsinki, Finland) equipped with 
306 channels. The machine was positioned in a magnetically 
shielded room at Aarhus University Hospital, Denmark. Data were 
recorded at a sampling rate of 1000 Hz with an analogue filtering 
of 0.1 to 330 Hz. Prior to the measurements, we accommodated the 
sound volume at 50 dB above the minimum hearing threshold of 
each participant. Moreover, by utilizing a 3D digitizer (Polhemus 
Fastrak, Colchester, VT, USA), we registered the participants’ head 
shape and the position of four headcoils, with respect to three 
anatomical landmarks (nasion and left and right preauricular 
locations). This information was subsequently used to coregister 
the MEG data with the anatomical structure collected by the MRI 
scanner. The location of the headcoils was registered during the 
entire recording by using a continuous head position identifica-
tion (cHPI), allowing us to track the exact head location within 
the MEG scanner at each time point. We utilized this data to 
perform an accurate movement correction at a later stage of data 
analysis. Finally, eyeblink and heart-beat activities were collected 
by applying two pairs of electrodes after cleaning the skin of the 
participants. To detect the eyeblink, one electrode was applied 
above and one below the right eye. To record the heart-beat 
activity one electrode was placed on the left last rib and the other 
one on the right collar bone of the participants. 

The recorded MRI data corresponded to structural T1. The 
acquisition parameters for the scan were: voxel size = 1.0 × 1.0 
× 1.0 mm (or 1.0 mm3); reconstructed matrix size 256 × 256; 
echo time (TE) of 2.96 ms and repetition time (TR) of 5,000 ms 
and a bandwidth of 240 Hz/Px. Each individual T1-weighted MRI 
scan was subsequently coregistered to the standard Montreal 
Neurological Institute (MNI) brain template through an affine 
transformation and then referenced to the MEG sensors space by 
using the Polhemus head shape data and the three fiducial points 
measured during the MEG session. 

Data preprocessing 
The raw MEG sensor data (204 planar gradiometers and 102 mag-
netometers) was pre-processed by MaxFilter (Taulu and Simola 

2006) for attenuating the interference originated outside the scalp 
by applying signal space separation (MaxFilter parameters: spa-
tiotemporal signal space separation (SSS), movement compensa-
tion using cHPI coils (default step size: 10 ms); correlation limit 
between inner and outer subspaces used to reject overlapping 
intersecting inner/outer signals during spatiotemporal SSS: 0.98). 

The data were converted into the Statistical Parametric 
Mapping (SPM) format and further analyzed in Matlab (Math-
Works, Natick, Massachusetts, United States of America) using 
Oxford Centre for Human Brain Activity Software Library (OSL) 
(Woolrich et al. 2011), a freely available toolbox that combines in-
house-built functions (https://github.com/leonardob92/LBPD-1.0. 
git) with existing tools from the FMRIB Software Library (FSL) 
(Woolrich et al. 2009), SPM (Penny et al. 2011), and Fieldtrip 
(Oostenveld et al. 2011). We applied a 48 to 52 Hz notch filter 
to correct for possible interference of the electric current and 
downsampled the data to 150 Hz. A few segments of the data 
(less than 0.5% of the whole dataset), contaminated by large 
artifacts, were removed after visual inspection. Then, to discard 
the interference of eyeblinks and heart-beat artifacts from the 
brain data, we performed independent component analysis (ICA) 
to decompose the original signal in independent components. 
We subsequently isolated and discarded the components that 
correlated with the time series recorded by the electrodes used 
for monitoring the eyeblink and heart-beat activities and rebuilt 
the signal from the remaining components (Mantini et al. 2011). 
In most cases, we rejected only two components, one for the 
eyeblink and one for the heart-beat activity. In a few cases, 
we rejected up to six components. This happened when more 
than one component picked up the eyeblink or the heart-beat 
activity. Finally, the data were low pass–filtered (40 Hz threshold) 
to improve the performance of the subsequently used decoding 
algorithm and univariate analyses and epoched in 80 trials 
(one for each musical excerpt) lasting 3,500 ms each (100 ms 
of prestimulus time). To be noted, when computing the static 
functional connectivity analysis we used data that were not low 
pass–filtered and therefore could be investigated in frequencies 
higher than 40 Hz. Then, correctly identified trials were analyzed 
by employing two different methodologies (multivariate pattern 
analysis and cluster based MCS of independent univariate 
analyses) to strengthen the reliability of the results as well as 
broaden the amount of information derived by the data. 

In addition, it is worth noting that we replicated the key 
analyses reported in the main text of this manuscript using 
only minimal preprocessing steps. Specifically, the analyses 
included decoding, MCS on MEG sensor data, and MCS on 
source reconstructed data. The preprocessing steps consisted 
of applying MaxFilter and ICA to remove eye-blink and heartbeat 
artifacts. The results of these analyses, which are reported in the 
Supplementary Materials, show that not performing low-pass and 
notch filters and using a different sampling rate (250 Hz) did not 
affect the significance of our original findings (see Figures SF2 
and SF3 for a comparison between the results obtained following 
the two preprocessing pipelines). 

Multivariate pattern analysis 
We conducted a multivariate pattern analysis to decode different 
neural activity associated with the recognition of previously 
memorized versus novel musical sequences. Specifically, we 
employed support vector machines (SVMs) (Cichy et al. 2014), ana-
lyzing each participant independently. MEG data were arranged in 
a 3D matrix (channels × time points × trials) and submitted to the 
supervised learning algorithm. To avoid overfitting, we employed
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a leave-one-out cross-validation approach to train the SVM 
classifier to decode the two conditions. This procedure consisted 
of dividing the trials into N different groups (here n = 8) and, for 
each time point, assigning N − 1 groups to the training set and the 
remaining Nth group to the testing set. Then, the performance of 
the classifier to separate the two conditions was evaluated. This 
process was carried out 100 times with random reassignment of 
the data to training and testing sets. Finally, the decoding accuracy 
time series were averaged together to obtain a final time series 
reflecting the performance of the classifier for each participant. 

To identify the channels that were carrying the highest amount 
of information required for decoding the two experimental con-
ditions, we followed the procedure described by Haufe and col-
leagues (Haufe et al. 2014) and computed the decoding sequences 
from the weights returned by the SVM. Moreover, we computed 
the confusion matrix for each time point, obtaining the four time 
series reported in Figure SF4. 

Finally, to assess whether the two experimental conditions 
were differentiated by neural sequences stable over time, we 
performed a temporal generalization multivariate analysis. The 
algorithm was the same as the one described above, with the 
difference that in this case we used each time point of the training 
set to predict not only the same time point in the testing set but 
also all time points (Cichy et al. 2014; King and Dehaene 2014). 

In both cases, to test whether the decoding results were sig-
nificantly different from the chance level (50%), we used a sign 
permutation test against the chance level for each time point and 
then corrected for multiple comparisons by applying FDR correc-
tion (α = 0.05; FDR-adjusted q < 0.026 for non-temporal general-
ization results and α = 0.02; FDR-adjusted q < 0.005 for temporal 
generalization results). 

Univariate tests and Monte Carlo simulations 
The multivariate pattern analysis is a powerful tool that requires 
relatively few preprocessing steps for returning an estimation of 
the different neural activity associated with two or more exper-
imental conditions. However, this technique does not identify 
which condition is stronger than the other nor the polarity of 
the neural signal characterizing the experimental conditions. To 
answer these questions and strengthen our results, we employed 
a different approach by calculating several univariate t-tests and 
then correcting for multiple comparisons by using MCS. 

Before computing the t-tests, in accordance with many other 
MEG and electroencephalography (EEG) task studies (Gross et al. 
2013), we averaged over trials in each condition, obtaining two 
mean trials, one for the memorized and one for the novel musical 
sequences. Then, we combined each pair of planar gradiometers 
by sum-root square. Afterward, we computed a t-test for each 
MEG channel and each time point in the time range 0 to 2.500 s, 
contrasting the two experimental conditions. Independently for 
the two MEG sensor categories, we reshaped the matrix for obtain-
ing, for each time point, a 2D approximation of the MEG channels 
layout that we binarized according to the P-values obtained from 
the previous t-tests (threshold = 0.01) and the sign of t-values. 
The resulting 3D matrix (M, 2D  × time) consisted of 0 s when the 
t-test was not significant and 1 s when it was. Then, to correct for 
the multiple comparisons happening in these univariate analyses, 
we identified the clusters of 1 s and assessed their significance 
by running MCS. Specifically, we made 1000 permutations of 
the elements of the original binary matrix M, identified the 
maximum cluster size of 1 s, and built the distribution of the 
1,000 maximum cluster sizes. Finally, we considered significant 
the original clusters that had a size bigger than the 99.9% 

maximum cluster sizes of the permuted data. The whole MCS 
procedure was performed for gradiometers and magnetometers 
(in the significant time-window emerged from gradiometers, see 
SI Appendix SR1 for details), for memorized versus novel musical 
sequences and vice versa. 

Relationship between neural activity and 
behavioral measures 
We investigated whether the neural activity underlying the musi-
cal recognition task was modulated by musical expertise and 
individual differences along the following four behavioral mea-
sures: WM skills (i), esthetical judgment of the musical piece 
used in the study (ii), previous familiarity with Bach’s prelude 
(iii), and the Goldsmith Musical Sophistication Index (GOLD-MSI) 
(iv) (Müllensiefen et al. 2013), which measures the ability of 
engaging with music. Regarding WM, we employed the widely 
used Wechsler Adult Intelligence Scale (WAIS-IV) (Wechsler 1997), 
which returned a reliable measure of individual WM. With regard 
to esthetical judgment of Bach’s prelude, we utilized a 7-score Lik-
ert scale from −3 (very unpleasant) to +3 (very pleasant). Previous 
familiarity with Bach’s prelude was assessed asking participants 
to mark the number corresponding to one of the following options: 
1) I have never heard it before; 2) I have occasionally heard it; 3) I 
sometimes listen to it; 4) I usually listen to it; 5) I played it for myself; 
and 6) I played it in front of a public. Further, in our sample, only six 
participants declared to have previously played the Bach’s prelude 
that we used in the study in front of a public and only four of them 
stated that they still remembered a few bars of it. 

Then, we used the averaged brain activity over the significant 
gradiometer channels returned by our previous analysis. Here, we 
computed the difference between the neural activity underlying 
recognition of memorized versus novel musical sequences. Then, 
we computed independent Pearson’s correlations for each time 
point of the resulting time series and the four behavioral mea-
sures described above [WM skills (i), esthetical judgment of Bach’s 
prelude used in the study (ii), previous familiarity with Bach’s 
prelude (iii), and the GOLD-MSI (iv)]. Moreover, we contrasted the 
brain activity underlying music recognition across pianists, non-
pianist musicians, and nonmusicians. For this analysis, we used 
one analysis of variance (ANOVA) for each time point. 

The time series obtained from the correlations and the ANOVA 
were binarized according to the outcome of the tests [one was 
assigned to the significant tests (P < 0.05), while zero to the non-
significant ones]. Those values were submitted to a 1D MCS with 
an α level = 0.001, to correct for multiple comparisons. First, we 
extracted the clusters of the significant results emerged from the 
correlations (here, cluster means group of contiguous significant 
values [ones]). Then, we computed 1,000 permutations and for 
each of them, we randomized the order of the binarized values 
and computed the maximum cluster size of the detected clusters 
of significant values. Finally, we built a reference distribution 
of the 1,000 maximum cluster sizes (obtained from the 1,000 
permutations) and considered significant the original clusters 
that were larger than the 99.9% of the permuted ones. 

Source reconstruction 
Beamforming 
The brain activity collected on the scalp by MEG channels was 
reconstructed in source space. First, we coregistered the individ-
ual MRI scan with the corresponding 3D coordinates recorded 
during the MEG session and transformed the native space into 
MNI space. In the few cases (three) when the individual MRI 
scan was not available, we used a brain template (MNI 152 T1
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template). Second, using OSL (Woolrich et al. 2011), we applied a 
local-spheres forward model and a beamformer approach as the 
inverse method (Hillebrand and Barnes 2005) (Fig. 1b and c). We 
utilized an 8 mm grid and both magnetometers and (noncom-
bined) planar gradiometers. We accounted for the differing signal 
strength of magnetometers and gradiometers by converting their 
values in standardized z-scores. The spheres model used as for-
ward model depicted the MNI-coregistered anatomy as a simpli-
fied geometric model, fitting a sphere separately for each sensor 
(Hillebrand and Barnes 2005). The beamforming that we employed 
as inverse method utilized a diverse set of weights sequentially 
applied to the source locations for isolating the contribution of 
each source to the activity recorded by the MEG channels for 
each time point (Hillebrand and Barnes 2005; Brookes et al. 2007). 
The covariance matrix necessary to compute those weights was 
calculated on the matrix obtained by concatenating the data of all 
trials for the two conditions and normalized according to Luckhoo 
et al. (2014) for counterbalancing the reconstruction bias toward 
the center of the head. 

General linear model 
An independent general linear model (GLM) was calculated 
sequentially for each time point at each dipole location and 
for each experimental condition (Hunt et al. 2012). At first, 
reconstructed data were tested against its own baseline to 
calculate the statistics of neural sources of the two conditions 
memorized and novel musical sequences. Then, after computing 
the absolute value of the reconstructed time series to avoid sign 
ambiguity of the neural signal, first-level analysis was conducted, 
calculating contrast of parameter estimates (memorized versus 
novel musical sequences) for each dipole and each time point. 
Those results were submitted to a second-level analysis, using 
one-sample t-tests with spatially smoothed variance obtained 
with a Gaussian kernel (full-width at half-maximum: 50 mm). 

Then, to correct for multiple comparisons, a cluster-based 
permutation test (Hunt et al. 2012) with 5,000 permutations was 
computed on second-level analysis results, taking into account 
the significant time range emerged from the MEG sensors MCS 
significant gradiometer cluster. Therefore, we performed one per-
mutation test on source space, using an α level of 0.05, corre-
sponding to a cluster forming threshold of t = 1.7. 

Brain activity underlying musical sequences development 
Then, as depicted in Fig. 1d, we performed an additional analysis 
considering the brain activity underlying the processing of each 
tone forming the musical sequences. To do that, we computed a 
GLM for each time point and source location. Then, we averaged 
over the time points forming each of the five time windows 
associated with the duration of the musical tones (0 to 250 ms, 
251 to 500 ms, 501 to 750 ms, 751 to 1,000 ms, 1,001 to 1,250 ms). 
Finally, we corrected for multiple comparisons with a cluster-
based permutation test, as described above (Hunt et al. 2012). 
Here, when computing the significant clusters of brain activation 
independently for the two experimental conditions (memorized 
and novel musical sequences), we computed 10 permutation 
tests on source space, adjusting the α level to 0.005 (0.05/10), 
corresponding to a cluster forming threshold of t = 2.7. Regarding 
memorized versus novel musical sequences, we performed five 
tests and therefore, the α level became 0.01 (0.05/5), corresponding 
to a cluster forming threshold of t = 2.3. 

Functional connectivity preprocessing 
After reconstructing the data into source space, we constrained 
the beamforming results into the 90 noncerebellar regions of 

the automated anatomic labelling (AAL) parcellation, a widely 
used and freely available template (Tzourio-Mazoyer et al. 2002) 
in line with previous MEG studies (Brookes et al. 2016) and  
corrected for source leakage (Colclough et al. 2015). Finally, since 
we were interested in studying the functional connectivity of 
evoked responses, according to a large number of MEG and 
EEG task studies (Gross et al. 2013), we averaged the trials over 
conditions, obtaining two mean trials, one for memorized and one 
for novel musical sequences. In order to minimize the probability 
of analyzing trials that were correctly recognized by chance, here, 
we only considered the 20 fastest (mean RT: 1,770 ± 352 ms) 
correctly recognized previously memorized musical sequences 
(mean RT: 1,717 ± 381 ms) and novel musical sequences (mean 
RT: 1,822 ± 323 ms) excerpts. The same operation has been 
carried out for the resting state that served as baseline. Here, 
we created 80 pseudo-trials with the same length of the 
real ones, starting at random time points of the recorded 
resting-state data. 

This procedure has been carried out for five different frequency 
bands (0.1 to 2 Hz, 2 to 8 Hz, 8 to 12 Hz, 12 to 32 Hz, 32 to 75 Hz) 
(Lee et al. 2018). 

Static functional connectivity and degree 
centrality 
We estimated the static functional connectivity (SFC) calculating 
Pearson’s correlations between the envelope (computed using 
the Hilbert transform; Liu 2012) of each pair of brain areas 
time courses. This procedure has been carried out for both 
task and baseline and for each of the five frequency bands 
considered in the study. Afterward, we averaged the connectivity 
matrices in order to obtain one global value of connectivity for 
each participant and each frequency band. These values were 
submitted to an ANOVA to discover which frequency band yielded 
the strongest connectivity effects (Allen et al. 2019). A follow 
up post-hoc analysis was conducted using Tukey’s correction 
for multiple comparisons. Then, for all frequency bands, we 
computed Wilcoxon sign-rank tests comparing each pair of brain 
areas for recognition task versus baseline, aiming to identify 
the functional connectivity specifically associated with the task. 
To assess the resulting connectivity matrix B, we identified the 
degree of each region of interest (ROI) and tested its significance 
through MCS59. 

In graph theory the weighted degree of each vertex v (here each 
brain area) of the graph G (here the matrix B) is given by  the sum  
of the connection strengths of v with the other vertexes of G, 
showing the centrality of each v in G (Rubinov and Sporns 2010). 
We computed the degree of each vertex of B for each musical tone, 
obtaining a 90 × 1 vector (st). Then, through MCS, we assessed 
whether the vertices of B had a significantly higher degree than 
the degrees obtained permuting the elements of B. Specifically, we 
made 1,000 permutations of the elements in the upper triangle of 
B and we calculated a 90  × 1 vector  dv,p containing the degree of 
each vertex v for each permutation p. Combining vectors dv,p we 
obtained the distribution of the degrees calculated for each per-
mutation. Finally, we considered significant the original degrees 
stored in st that randomly occurred during the 1,000 permutations 
less than two times. This threshold was obtained by dividing 
the α level (0.001) by the five frequency bands considered in the 
study. The α level was set to 0.001 since this is the threshold that, 
during simulations with input matrices of uniformly distributed 
random numbers, provided no false positives. This procedure was 
carried out for each frequency band and for both experimental 
conditions.
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Results 
MEG sensor data 
Our first analysis was conducted on MEG sensor data and focused 
on the brain activity underlying the recognition of the previously 
memorized versus novel musical sequences. On average, partic-
ipants correctly identified the 78.15 ± 13.56% of the previously 
memorized melodies [mean d’ score = 1.70 ± 1.03; mean reaction 
times (RTs): 1,871 ± 209 ms] and the 81.43 ± 14.12% of the novel 
melodies (mean d’ score = 2.38 ± 1.63; mean RTs: 1915 ± 135 ms). 
Subsequent MEG sensor data analyses were conducted on correct 
trials only. 

Multivariate pattern analysis 
As depicted in Fig. 2a, we conducted a multivariate pattern anal-
ysis using a support vector machine (SVM) classifier (see details 
in the Materials and Methods section) to decode different neural 
activity associated with the recognition of previously memo-
rized versus novel musical sequences. This analysis resulted in 
a decoding time series showing how neural activity differentiated 
the two experimental conditions. The decoding time series was 
significantly different from chance level in the time range 0.8 to 
2.1 s from the onset of the first tone (q < 0.026, false-discovery 
rate (FDR)–corrected, Fig. 2a, top left). The highest accuracy was 
reached when predicting the neural activity underlying recogni-
tion of novel melodies, while the prediction of previously memo-
rized melodies was less accurate, as shown by confusion matrix 
computed for each time point (Figure SF4). 

To evaluate the persistence of discriminable information over 
time, we applied a temporal generalization approach by training 
the SVM classifier at a given time point t, as before, but testing 
across all other time points. FDR-corrected (q < 0.005) results are 
depicted in Fig. 2a (top right) showing that performance of the 
classifier was significantly above chance even a few hundreds of 
milliseconds beyond the diagonal. 

In addition, we computed the same analysis after following 
only minimal preprocessing steps (i.e. MaxFilter and ICA for 
removing eyeblink and heart-beat artifacts) and using a sampling 
rate of 250 Hz. The analysis returned very similar results, 
although overall less strong. Indeed, the decoding time series 
was significantly different from chance level in several time 
windows in the time range 0.8 to 2.1 s from the onset of the first 
tone (q < 0.026, FDR-corrected). Moreover, temporal generalization 
analysis confirmed that the performance of the classifier was 
significantly above chance even a few hundreds of milliseconds 
beyond the diagonal (P < 0.005). A graphical depiction of the 
comparison between the two analyses that differed only for 
the preprocessing steps and for the sampling rate is provided 
in Figure SF2. Our procedure clearly shows that the significance 
of the results of our main analysis pipeline was not affected by 
computing low-pass and notch filter and by using 150 Hz instead 
of a different sampling rate such as 250 Hz. 

Univariate tests and MCSs 
First, we contrasted the previously memorized versus novel musi-
cal sequences (t-test threshold = 0.01, MCS threshold = 0.001, 1000 
permutations), considering the positive t-values only (which is 
when the memorized music was associated with a stronger brain 
activity than the novel melodies). We performed this analysis in 
the time range 0 to 2.5 s by using combined planar gradiome-
ters only. This procedure yielded the identification of one main 
significant cluster (MCS P < 0.001; time: 0.547–1.180 s, size: 2117), 
as depicted in Fig. 2b and c and reported in detail in Tables ST1 

and ST3. In addition, we computed the same analysis after follow-
ing only minimal preprocessing steps (i.e. MaxFilter and ICA for 
removing eyeblink and heart-beat artifacts) and using a sampling 
rate of 250 Hz. The results returned one large cluster that was very 
similar to the one described above (MCS P < 0.001; time: 0.640 to 
1.140 s, size: 2,649). Detailed statistics is reported in Table ST3, 
while a graphical depiction of the comparison between the two 
analyses that differed only for the preprocessing steps and for 
the sampling rate is provided in Figure SF2. Our procedure clearly 
shows that the results of our main analysis pipeline were not 
affected by computing low-pass and notch filter and by using 
150 Hz instead of a different sampling rate such as 250 Hz. 

After working with the gradiometers, we computed analyses 
for the magnetometers. Here, based on the significant cluster 
appearing, we computed the same algorithm one more time for 
magnetometers only, within the significant time range emerged 
for the first MCS (0.547 to 1.180 s, P < 0.001, Table ST1). This two-
step procedure was necessitated by the sign ambiguity typical 
of magnetometer data and returned three significant clusters 
(positive magnetometers: MCS P < 0.001; time: 0.627 to 1.180 s, 
size: 817: negative magnetometers: Cluster I—MCS P < 0.001; time: 
0.727 to 0.880 s, size: 190; Cluster II—MCS P < 0.001; time: 0.960 to 
1.133 s, size: 168). 

Then, the same procedure was carried out by considering 
the results where the brain activity associated with the novel 
melodies exceeded the one elicited by Bach’s prelude excerpts. 
This analysis returned eight small significant clusters (size range: 
6 to 14, P < 0.001) shown in Table ST2. 

Relationship between brain activity and behavioral 
measures 
Once we established that the recognition of the memorized and 
novel musical sequences gave rise to clearly different brain activ-
ity, we investigated whether such activity was modulated by 
individual differences such as WM and musical skills related to 
the Bach’s prelude used in the study. 

We correlated each time point of the brain activity time series 
with four behavioral measures: WM skill (i), esthetical judgment 
of the Bach’s prelude (ii), previous familiarity with the Bach’s 
prelude (iii), and the GOLD-MSI (iv), which measures the abil-
ity of engaging with music. We corrected for multiple compar-
isons by using MCS with significance level α = 0.001. Overall, the 
results showed that the neural activity was not correlated to 
such measures. Indeed, detailed analysis revealed only few small 
significant clusters. Two clusters at the gradiometer level were 
found for WM (Cluster I: MCS P < 0.001; time: 1.77 to 1.85, mean 
r = 0.32; Cluster II: MCS P < 0.001; time: 2.48 to 2.53, mean r = 0.30, 
Fig. 2b), meaning that participants with higher WM presented a 
stronger neural activity underlying musical recognition. Regard-
ing liking, we detected two significant clusters (Cluster I: MCS 
P < 0.001; time: 2.40 to 2.45, mean r = 0.33 (Figure SF5); Cluster 
II: MCS P < 0.001; time: 1.11 to 1.14, mean r = −0.27). The two 
clusters were small and pointed to different directions of the 
correlation with the neural data (one was positive and the other 
negative), suggesting that the esthetical judgment was not a good 
predictor of the brain activity. Additionally, both familiarity with 
Bach’s prelude and the GOLD-MSI returned only one small cluster 
showing a negative correlation: Cluster I: MCS P < 0.001; time: 1.18 
to 1.21, mean r = −0.28. (familiarity); Cluster I: MCS P < 0.001; time: 
0.10 to 0.13, mean r = −0.29 (GOLD-MSI) (Figure SF5). Finally, no 
significant differences were detected when contrasting the brain 
activity underlying music recognition across pianists, non-pianist 
musicians, and nonmusicians (Figure SF5).
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Fig. 2. Brain activity underlying memorized versus novel musical sequences. a) Multivariate pattern analysis decoding the different neural activity 
associated with memorized versus novel musical sequences. Decoding time series (left), spatial sequences depicted as topoplot (middle left), temporal 
generalization decoding accuracy (middle right), and statistical output of significant prediction of training time on testing time (right). b) The left plot 
shows the amplitude associated with memorized (red) and novel musical sequences (blue). The middle plot illustrates the t-statistics related to the 
contrast between memorized versus novel musical sequences. The right plot shows the correlation between WM abilities and the neural responses 
underlying recognition of the memorized versus novel musical sequences. Thinner lines depict standard errors. The plots refer to the average over the 
gradiometer channels forming the significant cluster outputted by MEG sensor MCS. c) Three couples of topoplots showing brain activity for gradiometers 
(left of each pair, fT/cm) and magnetometers (right of each pair, fT) within the significant time window emerged from MCS. First couple of topoplots 
depicts the neural activity underlying the recognition of the previously memorized musical sequences, second couple refers to the novel musical 
sequences, while the third one represents the statistics (t-values) contrasting the brain activity underlying recognition of memorized versus novel 
musical sequences. d) Neural sources for the recognition of memorized sequences (left), novel sequences (middle), and their contrast (right). The values 
are t-statistics. 

Source-reconstructed data 
To identify the neural sources of the signal, we employed a beam-
forming approach and computed a GLM for assessing, at each 
time point, the independent neural activity associated with the 
two conditions as well as their contrasts. 

Main cluster of previously memorized versus novel musical 
sequences 
We identified the neural sources of the gradiometers significant 
cluster emerging from the MEG sensor data when contrasting 

memorized versus novel musical sequences. Here, we performed 
one permutation test in source space, with an α level of 0.05, 
which, in our case, corresponded to a cluster forming threshold 
of t = 1.7. As depicted in Fig. 2d, results showed a strong activity 
originating in the primary auditory cortex, insula, hippocampus, 
frontal operculum, cingulate cortex, and basal ganglia. Detailed 
statistics are provided in Table ST4. In addition, we computed the 
same analysis after following only minimal preprocessing steps 
(i.e. MaxFilter and ICA for removing eyeblink and heart-beat arti-
facts) and using a sampling rate of 250 Hz. The analyses returned
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extremely similar results to the ones described above, localizing 
the significant difference between memorized and novel musical 
sequences auditory cortex, insula, hippocampus, frontal opercu-
lum, cingulate cortex, and basal ganglia. Detailed statistics is 
reported in Table ST4, while a graphical depiction of the compar-
ison between the two analyses that differed only for the prepro-
cessing steps and for the sampling rate is provided in Figure SF2. 
Our procedure clearly shows that the results of our main analysis 
pipeline were not affected by computing low-pass and notch filter 
and by using 150 Hz instead of a different sampling rate such as 
250 Hz. 

Dynamic brain activity during development of musical 
sequences 
To reveal the specific brain activity dynamics underlying the 
recognition of the musical sequences, we carried out a further 
analysis for each musical tone forming the musical sequence. 
Here, we adopted a stricter cluster forming threshold of t = 2.7 (see 
Materials and Methods for details). As depicted in Fig. 3a and b, 
we found significant activity within primary auditory cortex and 
insula, especially in the right hemisphere, for both experimental 
conditions. This activity decreased over time, following the 
unfolding of the musical sequences. Conversely, the contrast 
between memorized versus novel music gave rise to a burst 
of activity for the memorized Bach’s excerpts increasing over 
time, especially with regard to the last three tones of the musical 
sequences, as shown in Fig. 3c. This activity was mainly localized 
within hippocampus, frontal operculum, cingulate cortex, insula, 
inferior temporal cortex, and basal ganglia. We report detailed 
clusters statistics in Table ST5. In addition, we computed the 
same analysis after following only minimal preprocessing steps 
(i.e. MaxFilter and ICA for removing eyeblink and heart-beat 
artifacts) and using a sampling rate of 250 Hz. The analyses 
returned extremely similar results to the ones described above, 
localizing the significant difference between memorized and 
novel musical sequences auditory cortex, insula, hippocampus, 
frontal operculum, cingulate cortex, and basal ganglia. Moreover, 
the strongest difference between the two conditions was obtained 
for the last three tones of the musical sequences. Detailed 
statistics is reported in Table ST5, while a graphical depiction 
of the comparison between the two analyses that differed only 
for the preprocessing steps and for the sampling rate is provided 
in Figure SF3. Our procedure clearly shows that the results of 
our main analysis pipeline were not affected by computing low-
pass and notch filter and by using 150 Hz instead of a different 
sampling rate such as 250 Hz. 

Static functional connectivity 
To obtain a better understanding of the brain dynamics underly-
ing recognition, we complemented our brain activity results with 
an investigation of the static functional connectivity of the evoked 
responses. 

After constraining the MEG preprocessed data to the 90 non-
cerebellar parcels of the AAL parcellation, we estimated static 
functional connectivity by using Pearson’s correlations in five 
frequency bands: 0.1 to 2 Hz,  2 to 8 Hz,  8 to 12 Hz,  12 to 32 Hz,  32  
to 74 Hz. Then, we tested the overall connectivity strengths of the 
five frequency bands during auditory recognition by employing 
ANOVA. The test was significant [F(4,330) = 187.02, P < 1.0e-07). As 
depicted in Fig. 4a and b, post-hoc analysis highlighted especially 
that the 2 to 8 Hz band had a stronger connectivity profile than 
all other frequency bands (P < 1.0e-07). 

To detect the significance of each brain region centrality within 
the whole-brain network for the auditory recognition task, we 
contrasted the brain connectivity matrices associated with the 
task versus baseline by performing a Wilcoxon signed-rank test 
for each pair of brain areas. Then, the resulting z-values matrix 
was submitted to a degree MCS (see Materials and Methods 
for details). We computed this analysis independently for the 
five frequency bands, and therefore, we considered significant 
the brain regions whose P-value was lower than the α level 
divided by 5 (2.0e-04). The results for 2 to 8 Hz are depicted 
in Figure SF6 and reported as follows: left Rolandic operculum 
(P < 1.0e-07), insula (P < 1.0e-07), hippocampus (P = 5.5e-05), 
putamen (P < 1.0e-07), pallidum (P < 1.0e-07), caudate (P = 1.1e-
05), thalamus (P < 1.0e-07), Heschl’s gyrus (P < 1.0e-07), superior 
temporal gyrus (P < 1.0e-07), right superior temporal gyrus 
(P = 1.1e-06), Heschl’s gyrus (P < 1.0e-07), thalamus (P < 1.0e-
07), parahippocampal gyrus (P = 4.3e-05), pallidum (P < 1.0e-07), 
putamen (P < 1.0e-07), amygdala (P < 1.0e-07), insula (P < 1.0e-07), 
and Rolandic operculum (P < 1.0e-07). Additional results related to 
the other frequency bands are reported in supporting information 
(SI) Appendix (SR2). 

Conversely, the degree MCS of the contrasts between memo-
rized versus novel melodies yielded no significant results. 

Discussion 
In this study, we detected the spatiotemporal dynamics of the 
whole-brain activity and functional connectivity during recogni-
tion of previously memorized auditory sequences compared to 
matched novel melodies. 

First, by using a broadband multivariate pattern analysis 
and MCS of massive univariate data, we found converging 
evidence that the brain activity elicited by the recognition of 
musical excerpts extracted from Bach’s prelude compared to 
the novel musical sequences gave rise to significant changes 
in widespread regions including the primary auditory cortex, 
superior temporal gyrus, cingulate gyrus, hippocampus, basal 
ganglia, insula, and frontal operculum. Notably, the neural 
difference reflecting the recognition of memorized versus novel 
musical sequences extended from approximately 700 to 2,000 ms 
after the onset of the first tone of the melodies. This suggests 
that the brain discriminated the two categories of musical 
sequences, especially from tone number three of the sequences. 
Interestingly, this difference in neural activity extended up to 
2,000 ms, which corresponded to about 100 ms after participants 
categorized the musical sequences by using the response pad 
(the mean reaction time was approximately 1,900 ms for 
both categories of sequences). This could indicate that the 
elaborated process of recognition and discrimination of the two 
categories of musical sequences requires a widespread network 
of brain areas whose activity was differentiated for more than 
1,000 ms. 

Second, we inspected this finding further by estimating static 
functional brain connectivity evolving over time. Here, the 
recognition of both previously memorized and novel auditory 
sequences was accompanied by significant centrality within the 
whole-brain network of several brain regions including the insula, 
hippocampus, cingulate gyrus, auditory cortex, basal ganglia, 
frontal operculum, and subgenual and orbitofrontal cortices. This 
result emerged only for the frequency band: 2 to 8 Hz. 

First of all, the results presented in the current study either 
replicate or closely align to findings reported in our prior research 
on the long-term encoding and recognition of music (Bonetti et al.
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Fig. 3. Brain activity over time. a) Brain activity (localized with beamforming) associated with the recognition of previously memorized musical sequences 
(top row). Such sequences were extracted from the Bach’s prelude that participants attentively listened to before doing the recognition task. The bottom 
row depicts an example trial for the memorized sequences. Red tones illustrate the dynamics of the musical excerpt. b) Brain activity underlying the 
detection of the novel musical sequence (top row) and musical representation of one example trial (bottom row). c) Contrast (t-values) over time between 
the brain activity underlying memorized versus novel musical sequences. 

2021a; Bonetti et al. 2022a; Bonetti et al. 2024; Fernandez-Rubio 
et al. 2022; Fernández-Rubio et al. 2022), as well as with several 
studies investigating music, auditory perception, and memory 
processes. For instance, the brain activity observed in our study 
during the recognition of musical sequences aligns with previous 
research indicating auditory processes associated with the pri-
mary auditory cortex and insula (Mutschler et al. 2007; Brattico 
and Pearce 2013). Moreover, in this study we observed stronger 
activity underlying the recognition of the memorized sequence in 
brain areas related to memory recognition such as hippocampus, 
medial temporal cortices (Brown and Aggleton 2001; Bird 2017), 
and cingulate cortices (Teixeira et al. 2006). Additionally, the 
recognition of excerpts from Bach’s prelude was associated with a 
stronger activity of brain regions previously related to evaluative 
processes (Bach et al. 2008; Stephenson-Jones et al. 2016) and  
pleasure (Kringelbach 2010) such as the cingulate gyrus and sub-
genual cortices, as well as parts of the basal ganglia. Finally, recog-
nition of memorized music was accompanied by stronger activity 
in brain regions responsible for fine-grained auditory elaboration 
and prediction error such as the inferior temporal cortex (Zatorre 
et al. 2002) and insula (Limongi et al. 2013). Of particular interest is 
the involvement of the hippocampus and cingulate gyrus, whose 
role in auditory processing is not completely clear. The hippocam-
pus has been previously reported in relation to music, especially 

in fMRI studies that investigated memory processing for sounds 
(Baumgartner et al. 2006; Alluri et al. 2015). Nevertheless, less 
is known about its the fast temporal dynamics in relation to 
music processing. Interestingly, our results indicated that the 
hippocampus was mainly relevant for the abstract recognition 
of the melodic sequence, while its involvement in the auditory 
processing of single sounds was reduced. The cingulate gyrus is 
an associative area that has been connected to several cognitive 
processes involving music imagery, but not memory (Criscuolo 
et al. 2019; Criscuolo et al. 2022). Notably, in this study, we showed 
that it was strongly involved in music recognition, highlighting 
its relevance for auditory memory. Future research should fur-
ther investigate the specific role played by the cingulate gyrus, 
clarifying, for example, whether it is mainly related to the actual 
recognition process or if it modulates the attentional resources 
for the task. Interestingly, several brain regions we identified, such 
as the orbitofrontal cortex, cingulate gyrus, insula, and thalamus, 
are part of the limbic system. Despite our stimuli being brief 
musical excerpts not designed to elicit a wide range of emotional 
responses, these regions were still activated. Although definitive 
conclusions cannot yet be drawn, this activation may be due to 
two factors. First, the identified limbic regions are implicated in 
diverse functions beyond emotions (Bach et al. 2008; Limongi et al. 
2013; Stephenson-Jones et al. 2016; Criscuolo et al. 2019; Criscuolo
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Fig. 4. Static functional connectivity. a) Contrast between recognition task (memorized and novel musical sequences averaged together) and baseline 
SFC matrices calculated for five frequency bands: 0.1 to 2 Hz, 2 to 8 Hz, 8 to 12 Hz, 12 to 32 Hz, and 32 to 74 Hz. b) Violin-scatter plot showing the average 
of the SFC matrices over their two dimensions for all participants. c) Averaged MEG gradiometer channels waveform of the brain activity associated with 
the recognition task. d) Power spectra for the evoked responses associated with the recognition task computed for all MEG channels. The first power 
spectra matrix reflects the analysis from 1 to 74 Hz in 1 Hz intervals, while the second reflects the analysis from 1 to 30 Hz in 1 Hz intervals. 

et al. 2022) and, in this context, they may be more engaged in 
evaluative and memory functions rather than emotional ones. 
Alternatively, participants may have experienced a sense of recog-
nition and correctness when identifying the musical excerpts 
as familiar melodies, which could evoke an emotional response, 
arguably of pleasure, thereby engaging the limbic system. Future 
research should specifically investigate these possibilities. 

After verifying that our results were consistent with and 
replicated findings from our prior research and other studies 
in the field, we proceeded to test our novel hypotheses. The 
first hypothesis was to examine both the commonalities and 
distinctions in brain activity and functional connectivity during 
the recognition of musical sequences. Our connectivity analysis 
revealed both important similarities and differences with the 
brain activity, coherently with our previous works on the topic 
(Bonetti et al. 2022a; Fernandez-Rubio et al. 2022; Fernández-
Rubio et al. 2022). A key similarity consists of the significant brain 
areas emerged by conducting activity and functional connectivity 
analyses. Indeed, both analyses returned a network comprising 
insula, hippocampus, cingulate gyrus, auditory cortex, basal 
ganglia, frontal operculum, and subgenual and orbitofrontal 
cortices. This suggests that processing of auditory sequences does 
not only require the mere activation of a large network of brain 
areas but also their communication over time. Interestingly, a 
relevant difference between activity and functional connectivity 
was that the primary auditory cortex did not play a crucial 
role in functional connectivity, while it was central in the brain 
activity elicited by the presentation of the sounds. Moreover, 
the main connectivity patterns emerged for brain regions not 
only related to auditory processing but also to higher sound 
and linguistic elaborations such as the insula, inferior temporal 
cortex (Zatorre et al. 2002; Limongi et al. 2013), and frontal 
operculum (Koelsch et al. 2006). Furthermore, we also observed 
other central brain areas that have been previously related to 
evaluative (e.g. orbitofrontal and subgenual cortices; Bach et al. 

2008) and memory recognition (e.g. hippocampus; Squire and 
Bayley 2007 and basal ganglia; Stephenson-Jones et al. 2016) 
processes. Another relevant difference was that while the activity 
of the brain areas was strongly diverse in the recognition of the 
previously memorized versus novel sequences, the functional 
connectivity analysis did not reveal any difference between the 
two experimental conditions. This finding suggests that the 
communication between the large network of brain areas that 
we revealed may be necessary to process auditory sequences, 
while the key for discerning previously memorized from novel 
melodies may be in the differential activity over time of some of 
the key brain regions comprised in the large network. Lastly, it is 
important to emphasize that we observed significant connectivity 
patterns only within the 2 to 8 Hz frequency range. Given that 
our study presented sounds at a frequency of 4 Hz (with each 
sound lasting 250 ms), we cannot definitively determine whether 
the heightened connectivity in the 2 to 8 Hz range reflects a 
specific brain rhythm or a stimulus-driven brain response. Future 
studies are needed to explore this observation further. Moreover, 
future research should also investigate this phenomenon under 
different experimental conditions, including not only comparing 
resting state to active listening during memory tasks but also 
incorporating passive listening conditions. These efforts will 
help to refine our understanding of the functional connectivity 
mechanisms involved in music recognition. 

The second hypothesis consisted of comparing the brain 
networks revealed by the functional connectivity analysis with 
those obtained using the same analysis for sound encoding 
in Bonetti et al. (2021b). This comparison holds particular 
significance because our study utilized a different dataset from 
the same participants as Bonetti et al. (2021b), enabling direct and 
valuable insights into similarities and differences. Remarkably, 
the network of brain areas emerging for the recognition of 
musical sequences highly resembled the one reported in our 
previous work. Indeed, primary and secondary auditory cortex,
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insula, hippocampus, basal ganglia, cingulate gyrus, and frontal 
operculum were highly involved both in encoding and recognition 
of sounds and sequences. Interestingly, while encoding mainly 
recruited a network of brain areas in the right hemisphere (both 
in terms of activity and connectivity), recognition of musical 
sequences was associated with activity and centrality of both 
hemispheres, with an overall stronger involvement of the left one. 
Taken together, our two studies reinforce the thesis that for both 
encoding and recognition of music a large network of functionally 
connected brain regions typically involved in auditory, memory 
and evaluative processes is required. 

The third hypothesis involved employing temporal general-
ization in multivariate pattern analysis to investigate how brain 
patterns generalize over time. In our previous work (Bonetti et al. 
2024), we demonstrated that distinguishing between previously 
memorized and systematically varied musical sequences resulted 
in consistent brain patterns persisting throughout the entire 
sequence duration. Specifically, our findings indicated that brain 
responses to individual sounds within memorized and novel 
sequences were consistently similar, suggesting ongoing moni-
toring of each sound, confirmation of predictions aligned with 
memory traces, and error detection when discrepancies occurred. 
In this study, we extended our investigation by comparing brain 
patterns between previously memorized melodies and entirely 
novel ones (i.e. not systematically varied after specific sounds) to 
determine whether differential brain activity patterns remained 
stable across the entire musical sequence or exhibited divergence. 
The findings of this study revealed no consistent patterns, 
indicating that the differential activity between corresponding 
tones of the memorized and novel sequences varied throughout 
the sequence (e.g. the differential activity at tone three differed 
from that at tones four or five). This discrepancy likely stems from 
two potential reasons. First, it may be attributed to the faster pace 
of each auditory stimulus (250 ms in the current study) compared 
to our previous investigation (350 ms in Bonetti et al. 2024). The 
increased tempo may necessitate a more holistic processing of the 
musical sequence by the brain, rather than focusing on individual 
sounds. Consequently, this could explain why different sounds 
are processed in distinct ways, thus preventing generalization 
over time in our decoding analysis. The alternative explanation 
involves the absence of systematic variations to the original 
sequences in the novel condition. In Bonetti et al. (2024), the novel 
melodies initially mirrored the previously memorized ones before 
gradually diverging. This divergence induced prediction errors, 
reflected in stable brain patterns over time, which suggested that 
the brain monitored the entire sequence in a similar manner. 
This might be because the brain recognized the beginning of 
the sequence and attempted to discern whether the change was 
temporary or marked the start of a varied melody. In the current 
study, where the novel melodies were entirely different from the 
memorized originals, the brain appeared not to engage in such 
continuous monitoring, as indicated by the nongeneralizable 
results of the multivariate pattern analysis. 

Altogether, our findings can be seen in light of the global neu-
ronal workspace hypothesis proposed by Dehaene and Changeux 
(2005). They defined the global workspace as a privileged network 
of brain areas, where conscious information is processed in terms 
of memory, attention, and valence and subsequently broadcast 
and made available to the whole-brain (Dehaene and Changeux 
2005, 2011). As predicted by their hypothesis, the recognition of the 
memorized musical sequences extracted from Bach’s prelude— 
over and above the novel melodic sequences—led to stronger 
ignition of putative regions in the global workspace such as the 

hippocampus, cingulate gyrus, orbitofrontal cortex, and frontal 
operculum, perhaps reflecting the mechanisms that allow the 
brain to process, extract a meaningful representation, and recog-
nize previously memorized musical sequences. Remarkably, our 
research did not only show the brain regions involved in the 
musical recognition task but also provided the dynamics of the 
activity of such regions, thus expanding the hypothesis proposed 
by Changeux. We observed that the brain activity linked to the 
recognition of memorized versus novel musical sequences signif-
icantly differed from the third tone of the sequences. Moreover, 
such different activity was first observed for the cingulate gyrus 
(third, fourth, and fifth tone of the melodies) and then for the 
hippocampal areas, inferior temporal cortex, insula, and frontal 
operculum (fourth and fifth tone of the melodies). Interestingly, 
our findings showed that the conscious, effortful recognition of 
temporal sequences involved several high-order brain areas, while 
previous studies on automatic recognition and prediction error 
associated with sudden deviations in auditory sequences (e.g. 
indexed by MMN and N100) revealed a major contribution of 
sensorial brain areas such as auditory cortices (Bonetti et al. 
2021a; Bonetti et al. 2022b; Bonetti et al. 2018; Bonetti et al. 2017; 
Näätänen et al. 2007). This provides evidence for the relevance 
of the global neuronal workspace for conscious over automatic 
temporal sequence discrimination and recognition. 

A further theory in the neuroscientific field that can be related 
to our results is predictive coding. In this framework, the brain 
is considered a generator of models of expectations of incoming 
stimuli. Recently, this theory has been linked to complex cognitive 
processes, finding a remarkable example in the neuroscience of 
music (Koelsch et al. 2019). In their work, Koelsch and colleagues 
suggested that the perception of music is the result of an active 
listening process where individuals constantly formulate hypoth-
esis about the upcoming development of musical sentences, while 
those sentences are evolving and unfolding their ambiguities. 
Our study may be consistent with this perspective with regard 
to two of our outcomes. On the one hand, there is activity in 
the primary auditory cortex, responsible for the first sensorial 
processing of tones and decreasing over time. This may happen 
since the brain is predicting that a further tone will be presented, 
and its responses progressively decrease. On the other hand, 
the activation of brain areas related to memory and evaluative 
processes is increasing over time and stronger for the recognition 
of the memorized versus novel musical sequences. This may sug-
gest that the brain has formulated predictions of the upcoming 
sounds based on the memory trace previously stored during the 
encoding part of our experimental task. The match between those 
predictions and the actual sounds presented to participants may 
lead to the activation of the brain areas that we observed in 
our experiment. However, further studies are required to provide 
additional evidence that can properly demonstrate whether the 
brain is predicting the upcoming tones of the musical melodies. 
In our research, the novel melodies were completely diverse from 
the memorized ones. Differently, future investigations may sys-
tematically vary the novel melodies, introducing the variations 
at specific times (e.g. from tone number two, from tone number 
three). If the brain is predicting the upcoming sound, it will 
systematically show a prediction error signal when the sequence 
is varied. 

Analyzing the relationship between the brain activity during 
our recognition task and behavioral measures related to memory 
and musical skills showed very weak associations in small, iso-
lated clusters. This suggested that having more engagement with 
music, general musical expertise, or a previous familiarity and
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higher appreciation for Bach’s prelude does not play a major role 
in modulating the brain activity during the musical recognition 
task. However, a mild yet interesting effect was observed for WM. 
This evidence, coherently with previous research (Bonetti et al. 
2018), shows a connection between WM skills and neural data 
underlying memory tasks, indicating that the brain of individuals 
with higher WM abilities is characterized by a stronger activity 
when recognizing temporal sequences such as the excerpts from 
Bach’s prelude. Our results suggest that memory skills may be 
more important than musical abilities and expertise when rec-
ognizing temporal sequences, even when they consist of musical 
melodies. Future studies are called to further investigate the 
relationship between WM and the brain activity underlying recog-
nition of long-term encoded auditory information. 

We also investigated our data by focusing on MEG sensor 
analysis. In this regard, we found that brain activity was reflected 
by two ERF components: N100 to each sound and a slow neg-
ativity following the entire duration of the musical sequences. 
This negative waveform shares similarities with well-established 
ERF components such as contingent negative variation (CNV) 
(Walter et al. 1964; Naatanen et al. 2001). However, it also holds 
novel significance since in the current study it is associated with 
a conscious auditory recognition task, differently from classic 
studies on CNV (Walter et al. 1964; Rohrbaugh et al. 1976). Thus, 
in combination with findings reported by Bonetti et al. (2022a), 
our results offer new insights also into the dynamics of ERF 
and MEG sensor analyses. Future research is necessary to deter-
mine whether the observed slow negativity is influenced by the 
tempo of the stimuli or occurs independently of the musical 
pace. 

Finally, it is important to highlight that while a major part of 
our findings was localized in the cerebral cortex (e.g. primary 
and secondary auditory cortex, insular cortex, cingulate cortex, 
frontal operculum), we also observed significant results recon-
structed in deeper, subcortical areas such as hippocampus and 
basal ganglia. Whether MEG source reconstruction algorithms 
can reliably localize deep sources is part of a long-standing debate 
in the literature, and it is difficult to make definitive claims. 
On balance, it must be stated that deep sources are less easily 
detectable than cortical sources (Hillebrand and Barnes 2002; 
Goldenholz et al. 2009). Therefore, on the one hand, our results 
related to hippocampus and basal ganglia should be taken cau-
tiously and call for future replications. On the other hand, there 
is no reason to believe that deep sources cannot be identified at 
all using MEG, as suggested by the mathematics behind source 
reconstruction algorithms such as beamforming and by several 
previous studies on MEG source reconstruction (Muller et al. 2019; 
Pizzo et al. 2019). To summarize, we argue that our subcortical 
results are reliable although obviously less accurate than our 
findings concerning cortical areas. Thus, they call for further 
confirmation by future studies, possibly employing not only MEG 
but also different machines and techniques such as fMRI and 
intracranial EEG (iEEG). 

In conclusion, we have identified the spatiotemporal unfolding 
of fast-scale brain activity and functional connectivity associated 
with the recognition of previously memorized compared to novel 
musical sequences extended over time. We have shown the brain 
areas which were active and communicating during the process-
ing of the subsequent items of the melodies, thus offering a first 
glimpse of the neural processing of temporal sequences. Future 
studies are called to replicate our results and further investi-
gate the complex topic of encoding and recognition of temporal 
sequences. For instance, they should vary the experimental design 

and better disentangling the role of the different brain areas 
involved in the networks shown in our work. 
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